Claw-free circular-perfect graphs

نویسندگان

  • Arnaud Pêcher
  • Xuding Zhu
چکیده

The circular chromatic number of a graph is a well-studied refinement of the chromatic number. Circular-perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This paper studies claw-free circular-perfect graphs. First we prove that ifG is a connected claw-free circular-perfect graph with χ(G) > ω(G), then min{α(G), ω(G)} = 2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw-free circular-perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)} = 2. In contrast to this result, it is shown in [10] that minimal circularimperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this paper, we prove that claw-free minimal circular-imperfect graphs G have min{α(G), ω(G)} ≤ 3.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Structure of Claw-Free Perfect Graphs

In 1988, Chvátal and Sbihi [4] proved a decomposition theorem for claw-free perfect graphs. They showed that claw-free perfect graphs either have a clique-cutset or come from two basic classes of graphs called elementary and peculiar graphs. In 1999, Maffray and Reed [6] successfully described how elementary graphs can be built using line-graphs of bipartite graphs using local augmentation. How...

متن کامل

Partial characterizations of clique-perfect graphs II: Diamond-free and Helly circular-arc graphs

A clique-transversal of a graph G is a subset of vertices that meets all the cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint cliques. A graph G is clique-perfect if the sizes of a minimum clique-transversal and a maximum clique-independent set are equal for every induced subgraph ofG. The list of minimal forbidden induced subgraphs for the class of clique-perf...

متن کامل

Integer round-up property for the chromatic number of some h-perfect graphs

A graph is h-perfect if its stable set polytope can be completely described by nonnegativity, clique and odd-hole constraints. It is t-perfect if it furthermore has no clique of size 4. For every graph G and every c ∈ Z (G) + , the weighted chromatic number of (G, c) is the minimum cardinality of a multi-set F of stable sets of G such that every v ∈ V (G) belongs to at least cv members of F . W...

متن کامل

Almost all webs are not rank-perfect

Graphs with circular symmetry, called webs, are relevant w.r.t. describing the stable set polytopes of two larger graph classes, quasi-line graphs [8,12] and claw-free graphs [7,8]. Providing a decent linear description of the stable set polytopes of claw-free graphs is a long-standing problem [9]. Ben Rebea conjectured a description for quasi-line graphs, see [12]; Chudnovsky and Seymour [2] v...

متن کامل

Graph classes and Ramsey numbers

For a graph class G and any two positive integers i and j, the Ramsey number RG(i, j) is the smallest positive integer such that every graph in G on at least RG(i, j) vertices has a clique of size i or an independent set of size j. For the class of all graphs, Ramsey numbers are notoriously hard to determine, and they are known only for very small values of i and j. Even if we restrict G to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2007